- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Cohen, Theodore_A (2)
-
Luscombe, Christine_K (2)
-
Huang, Yunping (1)
-
Onorato, Jonathan_W (1)
-
Pakhnyuk, Viktoria (1)
-
Steiner, Emily_J (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Light‐emitting diodes (LEDs) are a lighting technology with a huge and ascending market. Typically, LED backlights are often paired with inorganic phosphors made from rare‐earth elements (REEs) to tune the emission lineshapes for different applications. However, REE production is a resource‐intensive process with many negative environmental impacts. Herein organic hybrid LEDs are developed using organic dyes synthesized from an abundant and non‐toxic natural product (theobromine) to replace REE phosphors. The resulted hybrid LED generates continuous emission from 400–740 nm, resulting in a high color rendering index (the current industry standard) of 90 and a color fidelity index (the most advanced and comprehensive standard) of 92, challenging commercial LEDs based on REE phosphors. In addition, the light‐converting composite is made from 99 wt% SBS, an inexpensive industrial polymer, and 1 wt% theobromine dyes, reducing the cost of the light converter to ¢1.30 for a 1 W LED, compared to approximately ¢ 19.2 of commercial products. The light converting efficiency of the dye‐SBS composite is 82%. Excited state kinetics experiments are also conducted to provide guidance to further increase the light‐converting efficiency of the theobromine dyes while maintaining excellent color rendering and fidelity.more » « less
-
Pakhnyuk, Viktoria; Onorato, Jonathan_W; Steiner, Emily_J; Cohen, Theodore_A; Luscombe, Christine_K (, Polymer International)Abstract This work presents improved compatibility in an elastomer/π‐conjugated polymer blend through side chain functionalization of the electronic polymer. Poly[(3‐(6‐bromohexyl)thiophene)‐ran‐(3‐hexylthiophene)] (P3BrxHT,x = 0%–100%) was synthesized (i) to improve miscibility with polybutadiene (PB) elastomer through altered π–π interactions and (ii) to covalently bond across phase‐segregated interfaces. Functionalization led to morphology with reduced domain sizes to improve crack onset strain from 7% to 40%. Furthermore, UV‐activated crosslinking reinforced mechanically weak interfaces and yielded at least an additional 40% increase in crack onset strain. Charge mobility in PB/P3BrxHT organic field‐effect transistors showed minimal dependence on bromide concentration and no negative effects from crosslinking. Functionalization was an effective method to reduce brittleness in PB/P3BrxHT blends through morphology modification and crosslinking to improve stability towards strain for potential stretchable electronic applications. © 2019 Society of Chemical Industrymore » « less
An official website of the United States government
